- The \qquad
\qquad gives a limit on how much the response of a sample would differ from the responses of a population.

$$
M O E= \pm \sqrt{\frac{1}{n}} \%
$$

- If the percent of the sample responding is p, then the percent of the population that would respond the same way is between:

$$
p-\sqrt{\frac{1}{n}} \% \text { and } p+\sqrt{\frac{1}{n}} \%
$$

1. Find the margin of error for a survey with a sample size of 664 people.
2. Find the margin of error for a survey with a sample size of 773 people.
3. Find the margin of error for a survey with a sample size of 3444 people.

What do you notice happens to the margin of error as the sample size gets bigger?
4. Find the results for a survey with a sample size of 664 people and a 54% "yes" rate.
5. Find the margin of error for a survey with a sample size of 773 people and a 27% "yes" rate.
6. Find the margin of error for a survey with a sample size of 3444 people and a 45.7 \% "yes" rate.

- Finding the \qquad $-$, given the Margin of Error:

$$
n=\frac{1}{\text { decimal }^{2}}
$$

7. Given the margin of error, $\pm 3 \%$, find the sample size.
8. Given the margin of error, $\pm 6.2 \%$, find the sample size.
9. Given the margin of error, $\pm 0.6 \%$, find the sample size.
10. Given that a survey had a "yes" range of $66.7-77.3 \%$, how many people were surveyed?
