Name: \_\_\_\_\_\_ Date: \_\_\_\_\_

## **Solving Proportions**

A **proportion** is an \_\_\_\_\_\_ stating that two \_\_\_\_\_ are \_\_\_\_\_.

We can write ratios as \_\_\_\_\_\_.

Revisiting Fractions: Shade half of each circle. Then write the fraction represented by each picture,









12

Now reduce each fraction. What do you notice?

We call two or more fractions \_\_\_\_\_\_ if they all simplify to the same fraction.

Determine if the following fractions are proportional.

1. 
$$\frac{2}{3}$$
 and  $\frac{8}{12}$ 

3. 
$$\frac{12}{24}$$
 and  $\frac{3}{4}$ 

2. 
$$\frac{3}{2}$$
 and  $\frac{18}{8}$ 

4. 
$$\frac{4}{3}$$
,  $\frac{16}{12}$ , and  $\frac{8}{6}$ 

## **Solving Proportions**

\_\_\_\_\_to solve for the missing piece. If part of the proportion is unknown, we can \_\_\_\_\_

1. 
$$\frac{10}{x} = \frac{8}{4}$$

2. 
$$\frac{4}{9} = \frac{2}{x}$$

3. 
$$\frac{6}{x+3} = \frac{3}{8}$$

1. 
$$\frac{10}{x} = \frac{8}{4}$$
 2.  $\frac{4}{9} = \frac{2}{x}$  3.  $\frac{6}{x+3} = \frac{3}{8}$  4.  $\frac{x+4}{2} = \frac{x+2}{4}$