TRANSFORMATIONS

 on the coordinateplane
created by:

TRANSLATIONS

- A translation moves every point of a figure the same distance in the same direction.
- Can be described by the mapping notation:

$$
(x, y) \rightarrow(x+a, y+b)
$$

Shifts a horizontally and b vertically

examplel

Quadrilateral $A B C D$ has vertices $A(-1,8), B(2,12)$, $C(5,8)$, and $D(-1,-2)$ and its image has a translation $(x, y) \rightarrow(x+12, y-5)$. What are the new coordinates of $A^{\prime} B^{\prime} C^{\prime} \cdot$?

example 3

Find the new coordinates of $\triangle L M N$ when rotated 90° clockwise about the origin and then reflected in the x axis. $L(3,1), M-1,6)$, and $N(-3,2)$

POINT	PRE-IMAGE	ROTATION $90^{\circ} \mathrm{CW}$	REFLECT IN X-AXIS	IMAGE
L				
M				
N				

COMPOSITION OF TRANSFORMATIONS

- Follow the sequence of transformations.

examplel

$\triangle T R Y_{\text {is translated }}(x, y) \rightarrow(x-4, y-3)$ and then rotated 90 counterclockwise about the origin. Graph and list the new vertices.

POINT	PRE-IMAGE	TRANSLATE	ROTATE 90° W W	IMAGE
T				
R				
Y				

example 2

Graph quadrilateral $A B C D$ with vertices $A(-1,2)$, $B(-1,5), C(4,6)$, and $D(4,2)$ and its image after the translation $(x, y) \rightarrow(x+3, y-1)$.

POINT	PRE-IMAGE	TRANSLATE	IMAGE								2							
A																		
A																		
B																		-
B																		
C																		
D																		
											-							

example 3

Graph quadrilateral $A B C D$ with vertices $A(1,-2)$, $B(3,-1), C(0,3)$, and $D(-4,1)$ and its image after the translation $(x, y) \rightarrow(x+2, y-2)$.

Point	PRE-IMAGE	TRANSLATE	IMAEE					\uparrow				
A					-	-						
						-						
B												
C												
D								7				

Reflections

-a A reflection is a transformation that uses a line like a mirror to reflect an image.

REFLEGTION IN THE X-AXIS

If (x, y) is reflected in x-axis, its image is the point $(x,-y)$.

Reflection in The Y-Axis

If (x, y) is reflected in y-axis, its image is the point $(-x, y)$.

example 2

Graph $\triangle A B C$ with vertices $A(-2,0), B(2,4)$, and $C(4,-4)$ and its image after a dilation centered at $(0,0)$ with a scale factor of $1 / 2$.

Graph $\triangle F G H$ with vertices $F(-4,-2), G(-2,4)$, and $H(-2,-2)$ and its image after a dilation centered at $(0,0)$ with a scale factor of $-1 / 2$.

point	PRE-IMAEE	dilation	IMAGE					1					
F													
													\rightarrow
G													
H													
									\downarrow				

DiLATIONS

- A dilation is a transformation in which a figure is enlarged or reduced.
- Dilations create similar figures.
- The scale factor indicates how much the figure will enlarge or reduce.
- Scale factor $=k$
$k>1$: A dilation is an enlargement $k<1$: A dilation is a reduction

examplel

$\triangle A B C$ has vertices $A(-5,5), B(-5,10)$, and $C(10,0)$ with $k=3$. List the new coordinates of the dilated image.

Reflection in the LiNe Y - X

If (x, y) is reflected in the line $y=x$, its image is the point (y, x).

REFLECTION NTHE LiNe Y - -X

If (x, y) is reflected in the line $y=-x$, its image is the point $(-y,-x)$

ROTATIONS

- A rotation is a transformation that is turned about a fixed point.

90° CLOCkmise OR 270 ${ }^{\circ}$ COUNTERCLOCkwiSe

If (x, y) is rotated 90° clockwise or 270° counterclockwise, then its image is the point $(y,-x)$.

180° CLOCKwise OR 180 ${ }^{\circ}$ COUNTERCLOCkwise

If (x, y) is rotated 180° clockwise or 180° counterclockwise, then its image is the point $(-x,-y)$.

270 ${ }^{\circ}$ CLOCkwiSe OR 90° COUNTERCLOCKwiSE

If (x, y) is rotated 270° clockwise or 90° counterclockwise, then its image is the point $(-y, x)$.

