\qquad Date: \qquad

Independent and Dependent Events

Multiplication Rule for Independent Events

- $P(A$ and $B)=P(A \cap B)=P(A) \bullet P(B)$

The two spinners at the right are spun. Find each probability.

1. $P(4$ and $C)$
2. P(greater than 3 and B)

3. P(odd and A)
4. P (less than 5 and $B)$

There are 10 yellow, 6 green, 9 orange, and 5 red cards in a stack of cards turned facedown. Once a card is selected, it is not replaced. Find each probability.
5. P(two yellow cards)
7. P (two cards that are not orange)
6. P (yellow and green)
8. P(two cards that are neither red nor green)
9. A coin is flipped, and a 6 -sided die is rolled. What is the probability of landing on the tail side of the coin and rolling a 3 on the die?
10. A jar contains 3 red, 5 green, 2 blue and 6 yellow marbles. A marble is chosen at random from the jar. After replacing it, a second marble is chosen. What is the probability of choosing a green and a yellow marble?
11. A jar contains 3 red, 5 green, 2 blue and 6 yellow marbles. If you pull two marbles from the jar at the same time, what is the probability of choosing a green and a yellow marble?
12. An aquarium contains 6 male goldfish and 4 female goldfish. You randomly select a fish from the tank, do not replace it, and then randomly select a second fish. P (male and male)?
13. A random sample of parts coming off a machine is done by an inspector. He found that 5 out of 100 parts are bad on average. If he were to do a new sample, what is the probability that he picks a bad part and then, picks another bad part if he doesn't replace the first?

How to Determine If 2 Events Are Independent:

- Plug in what you know into $P(A \cap B)=P(A) \bullet P(B)$ and test it!

14. Let event $M=$ taking a math class. Let event $S=$ taking a science class. Then, M and $S=$ taking a math class and a science class. Suppose $P(M)=0.6, P(S)=0.5$, and $P(M$ and $S)=0.3$. Are M and S independent?
15. In a class, 60% of the students are female. 50% of all students in the class have long hair. 45% of the students are female and have long hair. Of the female students, 75% have long hair. Let F be the event that the student is female. Let L be the event that the student has long hair. One student is picked randomly. Are the events of being female and having long hair independent?
